Invariant Radon Measures for Horocycle Flows on Abelian Covers

نویسنده

  • OMRI SARIG
چکیده

We classify the ergodic invariant Radon measures for horocycle flows on Zd–covers of compact Riemannian surfaces of negative curvature, thus proving a conjecture of M. Babillot and F. Ledrappier. An important tool is a result in the ergodic theory of equivalence relations concerning the reduction of the range of a cocycle by the addition of a coboundary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The generic points for the horocycle flow on a class of hyperbolic surfaces with infinite genus

A point is called generic for a flow preserving an infinite ergodic invariant Radon measure, if its orbit satisfies the conclusion of the ratio ergodic theorem for every pair of continuous functions with compact support and nonzero integrals. The generic points for horocycle flows on hyperbolic surfaces of finite genus are understood, but there are no results in infinite genus. We give such a r...

متن کامل

On Unipotent Flows in H(1, 1)

We study the action of the horocycle flow on the moduli space of abelian differentials in genus two. In particular, we exhibit a classification of a specific class of probability measures that are invariant and ergodic under the horocycle flow on the stratum H(1, 1).

متن کامل

Limit Theorems for Horocycle Flows

The main results of this paper are limit theorems for horocycle flows on compact surfaces of constant negative curvature. One of the main objects of the paper is a special family of horocycle-invariant finitely additive Hölder measures on rectifiable arcs. An asymptotic formula for ergodic integrals for horocycle flows is obtained in terms of the finitely-additive measures, and limit theorems f...

متن کامل

A note on Hölder regularity of invariant distributions for horocycle flows

We show that the invariant distributions for the horocycle flow on compact hyperbolic surfaces described by Flaminio and Forni [FF03] can be represented as distributions on the ideal circle tensorized with absolutely continuous measures, and use this information to derive their Hölder regularity. 2000 Mathematics Subject Classification: 37D40, 22E40, 46F20.

متن کامل

The Horocycle Flow and the Laplacian on Hyperbolic Surfaces of Infinite Genus

Consider a complete hyperbolic surface which can be partitioned into countably many pairs of pants whose boundary components have lengths less than some constant. We show that any infinite ergodic invariant Radon measure for the horocycle flow is either supported on a a single horocycle associated with a cusp, or corresponds canonically to an extremal positive eigenfunction of the Laplace–Beltr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004